
Abstract. In the 1970s two different structure-descrip-
tors were put forward, aimed at quantifying the extent of
branching of the carbon-atom skeleton of organic mol-
ecules: Randić’s connectivity index, v ¼

P
ðdrd2Þ�1=2,

where dr is the degree of the vertex r of the molecular
graph and where the summation goes over all pairs of
adjacent vertices (1975), and the greatest eigenvalue, k1,
of the molecular graph (1973, 1977). Curiously, these
two branching indices were never compared. By studying
the relation between k1 and an auxiliary quantity
q ¼

P
ðdrd2Þþ1=2, as well as the relation between q and v,

we establish the actual relation between v and k1. For
differently branched isomers, there is a (rough) de-
creasing correlation between k1 and v; however, within
groups of similarly branched isomers the correlation
between k1 and v increases and is nearly linear.
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1 Introduction

The fact that the extent of branching of the carbon-atom
skeleton of an organic molecule influences its physical and
chemical properties was known already in the 19th
century [1, 2]. It is therefore not surprising that the earliest
attempts to design topological indices suitable for quan-
titative studies of structure–property relations had to use
some numerical measure of branching. Extensive work on
quantifying molecular branching started in the 1970s and
was pursued in a number of different directions [3–14].
This problem has continued to attract the attention of
researchers [15–23]; for further details, historical data,
and additional bibliography see the reviews in Refs. [2,
24–33].

Here, we are concerned with two branching indices:
Randić’s connectivity index, v, and the greatest eigen-
value, k1, of the molecular graph. These were among the
first structure–descriptors that were explicitly proposed
for measuring molecular branching.

The connectivity index was put forward by Randić in
1975 in his seminal article [3] and is defined as

v ¼
X
ðrsÞ

1ffiffiffiffiffiffiffiffi
drds

p ; ð1Þ

where dr is the degree (number of first neighbours) of the
vertex r and where the summation embraces all pairs of
adjacent vertices of the molecular graph. The article [3] is
entitled ‘‘On characterization of molecular branching’’
and in it Randić stated that v is used for ‘‘a theoretical
characterization of molecular branching’’. Randić him-
self referred to v as the ‘‘branching index’’, but later the
name ‘‘connectivity index’’ prevailed [34, 35, 36].

At first glance v is not appropriate for measuring
branching. Namely, among alkane isomers the least and
most branched species have maximal and minimal v
values, respectively, and v decreases with the increase in
the extent of branching. This apparent difficulty is easily
overcome by postulating that vðGÞ < vðG0Þ implies that
G is more branched that G0, provided G and G0 represent
isomers. Similar ‘‘inverse’’ behaviour is found for nu-
merous other topological indices (e.g. Wiener, hyper-
Wiener, Hosoya indices) and is not considered as a
drawback.

Eventually v and its proper generalizations became
the most popular topological indices and found count-
less quantitive structure property relationship (QSPR)
and quantitive structure activity relationship (QSAR)
applications; for details see Refs. [34, 35, 36] and the
references quoted therein. It should be noted that after
the publication of Ref. [3], neither Randić himself nor
the numerous other authors who used the connectivity
index insisted on v being a measure of branching,
but rather treated it as one of the several molecular-
graph-based structure–descriptors useful for designing
quantitative structure–property and structure–activity
relations [34, 35, 36].

Correspondence to: I. Gutman
e-mail: gutman@knez.uis.kg.ac.yu

Regular article

Two early branching indices and the relation between them

Ivan Gutman, Dušica Vidović
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IfG is a graph with n vertices, then its adjacency matrix
A ¼ jjArsjj is a square matrix of order n defined via

Ars ¼ 1 if the vertices r and s are adjacent
0 otherwise .

n
ð2Þ

In 1977, on the basis of some earlier mathematical
results by Lovaász and Pelikán [37] (in which the
concept of branching is not mentioned at all), Cvetković
and one of the present authors [7] proposed to measure
branching by means of the greatest eigenvalue, k1, of the
adjacency matrix of the molecular graph.

The article [7] is entitled ‘‘Note on branching’’ and in
it it is claimed that ‘‘. . . a justification of the . . . empirical
finding that k1 is a measure of branching has been ob-
tained’’ and that the ‘‘fact that the largest eigenvalue of
the molecular graph is a measure of branching is . . .
completely understood’’.

Although Refs. [7, 37] are regular quoted in the rel-
evant chemical literature, very little attention and almost
no further research was devoted to this branching index.
A recent article [38] by Randić shows that this dis-
pleasing situation may improve in the near future.

Anyway, until now the relation between v and k1

seems to have never been investigated. The aim of this
work is to contribute towards filling this gap.

The k1 values of the isomeric decanes are plotted versus
the respective connectivity indices in Fig. 1. The first
impression is that the correlation between k1 and v is
very weak. (Such an impression was probably the reason
why nobody endeavoured to continue along these lines.)

By a more careful inspection of Fig. 1 (as well as of
analogous plots for other isomeric alkanes) we observe a
few regularities. These, and their mathematical analysis,
are outlined in the subsequent sections.

2 Relations between v and k1

The fundamental property of the connectivity index [3]
is that (within sets of isomers, especially within sets of
acyclic species) it decreases with the increasing extent of
branching; on the other hand, k1 is expected to increase
with the increasing extent of branching [7, 37]. Conse-
quently, one would anticipate that a decreasing corre-
lation may exist between k1 and v.

This indeed is the case, although such a correlation is
remarkable weak (Fig. 1).

By closer examination of the correlation between k1

and v it becomes evident that the ðv; k1Þ points are
clustered into certain easily recognizable groups (Fig. 1).
We found that the parameters determining to which
group a given ðv; k1Þ point belongs are the number of
tertiary, n3, and the number of quaternary, n4, carbon
atoms. Within each such group the correlation between
k1 and v increases (!) and is essentially linear (although,
again, not particularly good).

An additional surprise was the finding that
isomers having equal values of the sum n3 þ 3n4 (but
different values of n3 and n4) belong to the same cluster
of ðv; k1Þ points. (In Fig. 1 this happens within groups 4
and 5.)

We checked these (empirically established)
regularities on numerous classes of (chemical and
nonchemical) trees and found not a single case of
violation. Motivated by this, we tried to find an expla-
nation for such a kind of relation between the two early
branching indices.

Our analysis consists of two steps. First, we construct
an approximation for k1, relation this graph eigenvalue
with the degrees of the vertices of the molecular graph.
After such an approximation has been designed, we
determine the exact mathematical relation between
it and the connectivity index. By this, we arrive at an
approximate relation between v and k1, shedding some
light on the previously stated regularities.

3 Explaining the relations between v and k1

As before, G denotes a molecular graph possessing n
vertices and m edges. The connectivity index of G is
given by Eq. (1), where dr is the degree of the vertex r.
Recall that

d1 þ d2 þ 	 	 	 þ dn ¼ 2m ð3Þ
In what follows we need an auxiliary graph invariant, q,
defined as [39]

q ¼
X
ðrsÞ

ffiffiffiffiffiffiffiffi
drds

p
: ð4Þ

The analogy between v and q should be evident by
comparing Eqs. (1) and (4).

Let C ¼ ðC1;C2; . . . ;CnÞ be an n-dimensional row
vector and let Ct be the respective column vector. If Ct is
the first eigenvector of the adjacency matrix A, i.e., the
eigenvector corresponding to the greatest eigenvalue k1,
then ACt ¼ k1Ct, implying

Fig. 1. The greatest eigenvalue, k1, of the molecular graphs of the
75 isomeric decanes C10H22 versus the connectivity index, v. Eight
groups of points are recognized. Within each group the number of
tertiary ðn3Þ and quaternary ðn4Þ carbon atoms is constant – group
1: n3 ¼ 1 and n4 ¼ 2; group 2: n3 ¼ 0 and n4 ¼ 2; group 3: n3 ¼ 2
and n4 ¼ 1; group 4: n3 ¼ 4 and n4 ¼ 0 or n3 ¼ 1 and n4 ¼ 1; group
5: n3 ¼ 3 and n4 ¼ 0 or n3 ¼ 0 and n4 ¼ 1; group 6: n3 ¼ 2 and
n4 ¼ 0; group 7: n3 ¼ 1 and n4 ¼ 0; group 8: n3 ¼ 0 and n4 ¼ 0.
Clearly, the extent of branching decreases as one moves from group
i to group iþ 1; i ¼ 1; 2; . . . ; 7
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k1 ¼ CACt

CCt : ð5Þ

By expanding the right-hand side of Eq. (5) and bearing
in mind Eq. (2), we obtain

k1 ¼
2
P

ðrsÞ CrCsPn
r¼1ðCrÞ2

: ð6Þ

Now, it has been known for some time [39, 40, 41, 42]
that the rth component of the first eigenvector of a
molecular graph is related to the degree of the rth vertex.
In particular, as a relatively good approximation,

ðCrÞ2 
 dr

By setting C 
 ð
ffiffiffiffiffi
d1

p
;

ffiffiffiffiffi
d2

p
; . . . ;

ffiffiffiffiffi
dn

p
Þ into Eqs. (5) and (6)

we arrive at

k1 

2
P

ðrsÞ
ffiffiffiffiffiffiffiffi
drds

p
Pn

r¼1 dr
;

which in view of Eqs. (3) and (4) becomes

k1 
 q
m

: ð7Þ

The applicability of the approximation in Eq. (7) is
illustrated in Fig. 2.

The statistical data indicating the quality of the
approximation in Eq. (7) for sets of isomeric alkanes
are given in Table 1.

In view of Eq. (7) it may be expected that the relation
between q and v will possess features similar to what
previously was found for the relation between k1 and v.
Recall that in all the samples examined, m is constant
(and is equal to n� 1). This indeed is the case, as seen
from the example depicted in Fig. 3.

Again, the ðq; vÞ points are separated into several
groups and, again, the parameters n3 and n4 determine to
which group a given point will belong. This time, how-
ever, the points within a group lie exactly on straight lines,
which happen to be parallel and equidistant (Fig. 4).

The previously specified behaviour of the q�v rela-
tion can be verified by means of the following mathe-
matical analysis.

Denote the number vertices of degree 1, 2, 3, and 4
by n1, n2, n3, and n4, respectively. Clearly, in the case
of molecular graphs of saturated hydrocarbons, n1 is
the number of methyl groups, whereas n2, n3, and n4

count the secondary, tertiary, and quaternary carbon
atoms.

Denote the number of edges connecting a vertex
of degree i by a vertex of degree j by mij. Then, the
following ‘‘bookkeeping’’ relations are obeyed [43, 44]:

n1 þ n2 þ n3 þ n4 ¼ n ; ð8Þ

n1 þ 2n2 þ 3n3 þ 4n4 ¼ 2m ; ð9Þ

m12 þ m13 þ m14 ¼ n1 ; ð10Þ

m12 þ 2m22 þ m23 þ m24 ¼ 2n2 ; ð11Þ

m13 þ m23 þ 2m33 þ m34 ¼ 3n3 ; ð12Þ

Table 1. Statistical data showing the quality of the approximation
in Eq. (7) in the case of isomeric alkanes with n carbon atoms. R is
the correlation coefficient, SD is the standard deviation, and A and
B are the coefficients in the expression k1 
 Aðq=mÞ þ B, calculated
by least-squares fitting. Note that in all cases, A and B practically
coincide with unity and zero, respectively

n R SD A B

6 0.997 0.009 0.935 ± 0.040 0.156 ± 0.077
7 0.990 0.016 0.958 ± 0.052 0.131 ± 0.104
8 0.982 0.021 0.950 ± 0.045 0.160 ± 0.092
9 0.970 0.025 0.995 ± 0.043 0.085 ± 0.089

10 0.960 0.028 1.000 ± 0.034 0.084 ± 0.072

Fig. 2. Exact versus approximate values of the greatest eigenvalue
of the molecular graphs of isomeric decanes, Eq. (7). Note that
the regression line goes through the origin and has unit slope; for
details see Table 1

Fig. 3. The topological index, q, of isomeric decanes versus v;
several pairs of isomers have equal values of both q and v and
therefore the number of points is (seemingly) smaller than in Fig. 1.
The points are grouped according to the parameters n3 and n4, as in
Fig. 1. Exceptionally, groups 4 and 5 from Fig. 1 are now split into
group 4a: n3 ¼ 4 and n4 ¼ 0; group 4b: n3 ¼ 1 and n4 ¼ 1; group
5a: n3 ¼ 3 and n4 ¼ 0; and group 5b: n3 ¼ 0 and n4 ¼ 1. Within
each group the points lie on one or several mutually parallel and
equidistant straight lines, cf. Fig. 4
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m14 þ m24 þ m34 þ 2m44 ¼ 4n4 : ð13Þ
Further, the topological indices v and q can be written as

v ¼ m12ffiffiffi
2

p þ m13ffiffiffi
3

p þ m14

2
þ m22

2
þ m23ffiffiffi

6
p

þ m24ffiffiffi
8

p þ m33

3
þ m34ffiffiffiffiffi

12
p þ m44

4
; ð14Þ

q ¼
ffiffiffi
2

p
m12 þ

ffiffiffi
3

p
m13 þ 2m14 þ 2m22 þ

ffiffiffi
6

p
m23 þ

ffiffiffi
8

p
m24

þ 3m33 þ
ffiffiffiffiffi
13

p
m34 þ 4m44 : ð15Þ

Equations (8), (9), (10), (11), (12), (13), (14), and (15) are
linear in terms of the parameters ni and mij. They can
be combined in many different ways. The successful
strategy happens to be the following. We discovered
it by trial and error, guided by empirical findings,
especially those depicted in Figs. 3 and 4.

Express m12;m13;m14; and m24 from Eqs. (10), (11),
(12), and (13) and substitute into Eqs. (14) and (15).
Combine the expressions so obtained for v and q to
eliminate m34. Then, fortunately, the term m23 will also
disappear. Finally, eliminate n1 and n2 by means of
Eqs. (8) and (9). This results in

q ¼ 2
ffiffiffi
6

p
v þ 4 þ 4

ffiffiffi
3

p
� 5

ffiffiffi
2

p
� 2

ffiffiffi
6

p� �
n

þ 8
ffiffiffi
2

p
þ 3

ffiffiffi
6

p
� 6 � 7

ffiffiffi
3

p� �
m

þ 2 þ 11
ffiffiffi
3

p
� 23

2

ffiffiffi
2

p
�

ffiffiffi
6

p� 	
n3

þ 12 þ 12
ffiffiffi
3

p
� 9

ffiffiffi
2

p
� 6

ffiffiffi
6

p� �
n4

þ 4 þ 3
ffiffiffi
3

p
� 3

ffiffiffi
2

p
� 2

ffiffiffi
6

p� �
m22

þ 5 þ 3
ffiffiffi
2

p
� 3

ffiffiffi
3

p
� 5

3

ffiffiffi
6

p� 	
m33

þ 2 �
ffiffiffi
2

p
�

ffiffiffi
3

p
þ 1

2

ffiffiffi
6

p� 	
m44 ; ð16Þ

i.e.,

q ¼ 4:898979v � 1:041844nþ 0:537822mþ 2:339613n3

þ 5:359749n4 þ 0:054532m22 � 0:035995m33

þ 0:078481m44 :

From Eq. (16) all the observed features of the relation
between q and v are easily understood. The noteworthy
(and decisive) detail is that the coefficients associated
with the parameters m22;m33 and m44 are order of
magnitude smaller than the coefficients of n3 and n4. This
cause the clustering of the ðq; vÞ points to be determined
solely by n3 by n4 and within a group (with fixed values
of n3 and n4) the linear relation between q and v to be
determined solely by m22;m33; and m44. Note that almost
always (especially in chemically realistic examples)
m44 ¼ 0: All the straight lines on which the ðq; vÞ points
lie are mutually parallel and have slopes of
2

ffiffiffi
6

p
¼ 4:898979.

Bearing in mind Eq. (7) the previous conclusions
concerning the relation between q and v are also appli-
cable (as reasonable approximations) in the case of the
correlation between k1 and v.

In Eq. (16) the ratio between the coefficients at n4 and
n3 is 2.3. Because this is sufficiently different from 3, the
ðq; vÞ points having equal ðn3 þ 3n4Þ values are separated
into distinct, yet nearby–lying, groups. The respective
ðk1; vÞ points belong to a single group (Figs. 1, 3).

4 Concluding remarks

In the chemical literature several ways to measure
molecular branching have been considered
[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23].
In the absence of a generally accepted view on how
branching should be quantified, it is not possible to
claim that v is a better measure of branching than k1, or
vice versa. However, on the basis of the results reported
here, one must conclude that the greatest eigenvalue of
the molecular graph and the connectivity index are not
compatible as measures of molecular branching, and
cannot be both used for the same purpose. Curiously, a
quarter of a century was needed to arrive at this simple
conclusion.

From a pragmatic point of view, preference should be
given to the branching index that is used by the majority
of colleagues, and that found most the numerous ap-
plications in QSPR and QSAR studies. This, no doubt,
is the connectivity index, v.
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7. Cvetković DM, Gutman I (1977) Croat Chem Acta 49: 115
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